

Sediment supply, seagrass interactions and remote sensing

Dr Scott Wilkinson | Principal Research Scientist February 2019

LAND AND WATER www.csiro.au

Contributors: Klaus Joehnk, Janet Anstee, Fazlul Karim, Zygmunt Lorenz, Mark Glover, Gordon McLachlan (CSIRO) Rhys Coleman (Melbourne Water)

Sediment in Western Port

- Changed inputs
 - Catchment clearing
 - Agricultural intensification
 - River channelisation
 - Port dredging
 - Earthworks

19 January 1973

25 April 2016

Landsat 8

Landsat MSS

Sediment in Western Port

Sediment deposition and transport

²4⁰ ^{km}Sediment, seagrass and remote sensing

Image © 2015 Sinclair Knight Merz & Fugro Image © 2015 TerraMetrics Image © 2015 CNES / Astrium Image © 2015 DigitalGlobe Google earth

Linkages between sediment and seagrass

River gauge loads

- Some increase in concentrations since 1990s
 - Bunyip and Cardinia Increased earthworks?
 - Bass Agricultural intensity?
- Subsoil dominates sediment

log10(Discharge (Cumecs))

Inputs to Western Port scaled from gauge loads

	CARDINIA	BUNYIP	LANG LANG	BASS	SUM
Estimated ratio export/gauge loads	3	1.4	1.22	1.11	1.34
Export TSS load (kt y ⁻¹)	2.8	7.4	9.7	3.9	24
Export TN load (kt y ⁻¹)	59	210	240	220	730
Export TP load (kt y ⁻¹)	7.5	23	27	13	70
Export TSS load (%)	12%	31%	41%	16%	100%

River station loads (TSS)

River station loads (TN and TP)

Coastal bank erosion

 Tomkins K, McLachlan G, Coleman R. 2014. Quantification of coastal bank erosion rates in Western Port. CSIRO.

11 | Sediment, seagrass and remote sensing

Approx distance: 50 cm

Coastal bank erosion

- TSS input = 4-8 kt y⁻¹
- 76% clay

-6

-5

-4

-3

-2

-1

0

12/2012

06/2013

01/2014

07/2014

02/2015

Erosion per month (cm)

Coastal bank erosion

• 23-24-25 June 2014

Review of historical sediment inputs

Incised channels have stabilised

(c)

(d)

CSIRC

Western Port TSS concentration

Legend andsat 8 238 NAP mg/L 0 0.01 - 2.5 2.51 - 5 5.01 - 7.5 7.51 - 10

Seagrass extent

- 155 km² of seagrass and macroalgae were recorded:
 - 130 km² seagrass or a mixture of seagrass and algae
 - 45 km² mixed 'Dense Zostera/Heterozostera with algae'
 - 20km² mixed 'Amphibolis with Macroalgae'
 - 25km² 'Undefined Algae'

Blake, S. and Ball, D. (2001). <u>Victorian Marine Habitat</u> <u>Database. Seagrass mapping of Western</u> <u>Port Geospatial Systems Section, Marine and</u> <u>Freshwater Resources Institute report No. 29.</u> <u>Marine and Freshwater Resources Institute:</u> <u>Marine And Freshwater Resources Institute:</u>

Landsat data for seagrass mapping

Spectra can discriminate algae and seagrass from mud

Sediment, seagrass and remote sensing

Seagrass remote sensing results

CSIRO

Seagrass response modelling

Model inputs include light, temperature, salinity and nutrient limitation

Sea level rise and temperature impacts

- Light climate affects seagrass condition and extent by modifying growth rate and mortality
- Sediment also impacts seagrass through smothering, and aggradation

 1 m sea level rise or 4 C temperature increase over 100 years reduces seagrass extent within existing range

Catchment modelling of sediment sources

Riparian vegetation height

Summary

 Catchment sediment supply appears to be below a historical peak but is affected by landuse intensification and no longer declining

- Coastal bank erosion continues and may increase
- Bay turbidity can be affected by decadal variations in load
- Managing supply at or below current levels may help improve water clarity in coming decades
- Sea level rise and warming will reduce the seagrass extent within its existing range
- Remote sensing, river load monitoring and catchment modelling can help to inform and evaluate management, and assess condition

