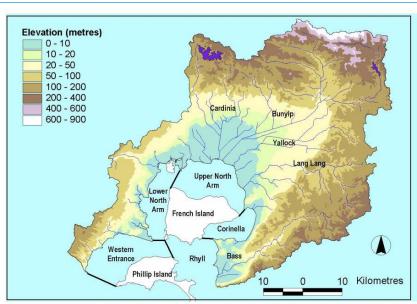

Overview of the Western Port Environment Research Program

Rhys Coleman Waterways and Wetlands Research Manager Melbourne Water

Understanding the Western Port Environment 2018

Western Port

Catchment area 3,365 km², 2,232 km rivers & creeks


Catchment Land use 6% Urban 69% Agricultural 25% Forest

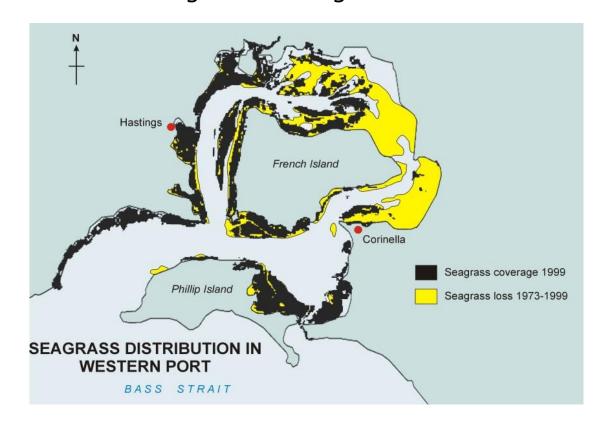
680 km² bay area

Extensive seagrass beds in north & south east

40% bay exposed as mudflats during low tide

30% of water volume is exchanged with each tidal cycle

Historical Changes


Substantial changes to the waterways and catchments over past 200 years e.g.

- Draining Koo Wee Rup Swamp (formerly 400km²) 1857-1930s
- Previously few streams flowing to north, now many artificial channels
- Extensive catchment vegetation clearing
- Dams and diversions e.g. Tarago and Cardinia Reservoirs, Bunyip Diversion
- Progressive urban growth

Management Issues

Seagrass loss of ~50-70% mid-1970s-80s, some recovery since Reduction in mangrove and saltmarsh coverage Declining fish stocks Decline in waterbirds species Pest plants and animals e.g. *Spartina* High nutrients from intensive agriculture e.g. Watsons Creek catchment

Supports Important Ecological Values

Ramsar Waterbirds

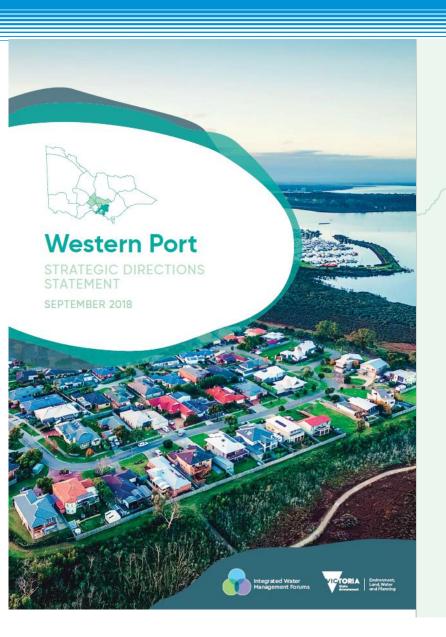
3 Marine national parks

Rocky reefs

Mangroves

Invertebrates

Saltmarsh



Fish

Future Challenges

250,000 NOW (2018) **500,000** BY 2040

- URBAN AREAS 6%
- FORESTED 25%
- AGRICULTURE 69%

15,000

MIGRATORY BIRDS VISIT RAMSAR-LISTED WESTERN PORT

SEA LEVEL

IN THE NEXT 80 YEARS

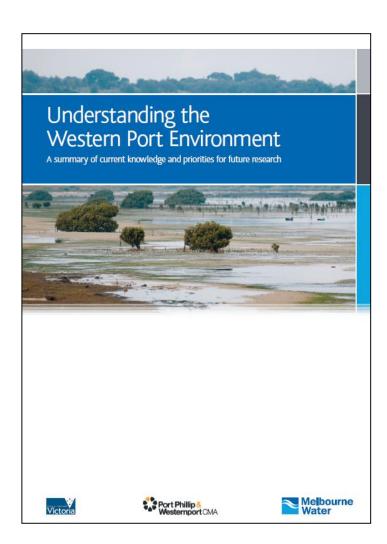
TEMPERATURE

WATERWAYS 2,232 KM

Source: Department of Environment, Land, Water and Planning Healthy Waterways Strategy 2013/14-2017/18, Melbourne Water Victoria in future 2016 Understanding the Western Port Environment 2011, Melbourne Water Lack of research since 1970s

Lack of consolidated information about key values, threats and management priorities

Need for Strategic Understanding of Western Port Environment (Better Bays & Waterways 2009)



Western Port Environment Science Review

- What's important about the environment?
- What are the major threats?
- Do we know enough to protect it?
- What are the strategic research gaps?

Western Port Environment Science Review

Project led by Melbourne Water

Funding and support from DSE (DELWP) and P&WP CMA

9 government agencies, 11 researchers (Prof. Michael Keough UoM)

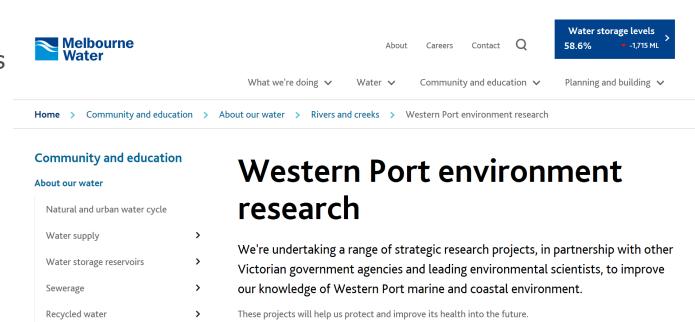
Broader stakeholder input e.g. WPCC

Review released in March 2012

Research program commenced in 2011 and ongoing

Department of Transport

Western Port Environment Research Program


- All very high priority research projects now completed or well underway
- Information published on Melbourne Water's website:

Rivers and creeks

www.melbournewater.com.au

- science review
- project summaries
- publications

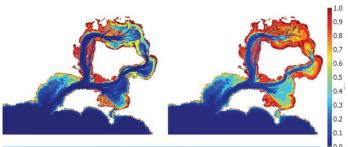
4 public seminars

Understanding the Western Port Environment 2018

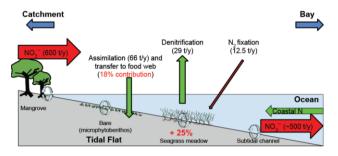
Collaborators

Substantial co-funding/in-kind resources from other organisations:

Partner Organisations

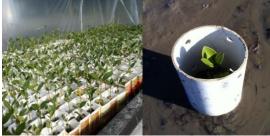

DELWP
DEDJTR
EPA Victoria
Parks Victoria
Port Phillip and Westernport CMA
Central Coastal Board
The Nature Conservancy
Western Port Seagrass Partnership

Research Organisations


Arthur Rylah Institute **CSIRO** Deakin University Eco Insights eCoast. Federation University Hydronumerics Monash University Museum of Victoria Phillip Island Nature Parks Riverbend Ecological Services Southern Cross University The University of Melbourne University of Tasmania Victoria University

Initial Focus of Research

Physical processes
Nutrients and sediments
Seagrass, mangroves, saltmarshes
Iconic species - waterbirds, fish
Toxicants
Invasive weeds

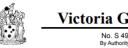


Examples of how research supports waterway management

General resource to support informed decision making

Priority issues/opportunities for major strategies and plans e.g. Healthy Waterways Strategy

New SEPP sediment loads/concentration targets

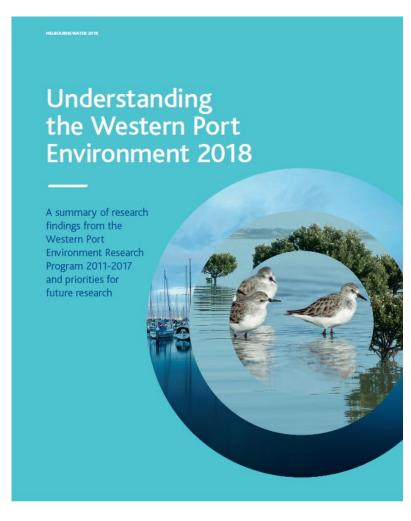

Catchment planning tool to identify sediment management priorities

Ongoing mangrove planting programs e.g. WPSP

Environmental flow objectives for Australian grayling

'State of the Bays' reporting

Victoria Government Gazette


No. S 493 Friday 19 October 2018 By Authority of Victorian Government Printer

Environment Protection Act 1970
STATE ENVIRONMENT PROTECTION POLICY (WATERS)

Understanding the Western Port Environment 2018

Summary of research findings since 2011
Threats and opportunities for management
Significantly increased our knowledge
Updated research priorities

Agenda

REGISTRATION tea/coffee		9.00 - 9.15 am
Welcome to Country	Uncle Shane Clarke Bunurong Traditional Owner	9.15 - 9.25
Overview of Western Port Environment Research Program	Rhys Coleman Melbourne Water	9.25 - 9.40
Sediments and seagrass	Scott Wilkinson, CSIRO	9.40 - 10.00
Seagrass, light, nutrients and genetics	Craig Sherman, Deakin University	10.00 - 10.20
Modelling sediments for seagrass restoration	Kath Cinque Melbourne Water	10.20 - 10.40
MORNING TEA		10.40 - 11.10
Toxicants – identification and management	Jackie Myers, RMIT	11.10 - 11.30
Birds – population trends and conservation	Richard Loyn, Eco Insights	11.30 - 11.50
Fish – recreational fish population trends, drivers and habitats	Greg Jenkins University of Melbourne	11.50 - 12.10
Grayling – Migratory life cycle	Wayne Koster, Arthur Rylah Institute	12.10 - 12.30 pm
LUNCH		12.30 - 1.20
Mangroves and saltmarsh	Thomas Hurst Melbourne Water	1.20 - 1.40
Mangrove and seagrass research at Deakin University	Peter Macreadie Deakin University	1.40 - 2.00
WRAP UP	Rhys Coleman	2.00 - 2.05

www.melbournewater.com.au

Research Complete or Underway

Project	No.	Priority	Funded by	Led by	Status	Publications		
Physical processes								
Detailed and up-to-date bathymetry for Western Port	R.1	1	DELWP	DELWP	Complete	DELWP 2017		
Calibrate hydrodynamic models for more accurate water movement	R.2	1	DELWP/ CMA/EPA	Hydronumerics	Complete	Hydronumerics (in prep)		
Atmospheric inputs into Western Port	R.8	2	MW/EPA/ CSIRO	EPA/CSIRO	Complete	EPA/CSIRO 2013		
Identify contribution of waves to sea-level changes in Western Port	R.9	2	MW/DELWP	Water Technology	Complete	Water Technology 2014		
Determine the contribution of storm tide sea levels to waterway flooding (when accompanied by high rainfall)	R.10	2	MW/DELWP	Water Technology	Complete	Water Technology 2014, 2015		
Incorporate shoreline erosion into climate change predictions	R.11	2	MW/DELWP	Water Technology	Complete	Water Technology 2013		
Nutrients and sediments								
Measure residence time of sediments entering the bay	R.4	2	MW/CSIRO	CSIRO	Complete	Wilkinson et al. 2016		
Contribution of coastal erosion to nutrient and sediment budgets	R.6	1	MW	CSIRO	Complete	Tomkins et al. 2014 Wilkinson et al. 2016		
Develop a preliminary nitrogen and phosphorus budget	R.12	1	MW	Monash University	Complete	Evrard et al. 2013 Wilkinson et al. 2016		
Measure nutrient cycling in major habitats	R.13	1	MW	Monash University	Complete	Evrard et al. 2013; Russell et al. 2016		
Build a process-based biogeochemical model	R.14	2	MW	MW/ Hydronumerics	Complete for hydrodynamics and sediments	Yeates and Okely 2016		

Research Complete or Underway

Seagrasses, mangroves and saltmarshes						
Assess the degree of nutrient and light limitation of seagrass, benthic microalgae, macroalgae and phytoplankton	R.15	1-3	MW/EPA/PV	Monash University	Underway (seagrass only)	Russell et al. 2016 Manassa et al. 2017
Determine water quality targets for sediments and nutrients that support seagrasses, benthic microalgae, reef algae, saltmarshes and mangroves	R.16	1-3	MW/EPA/PV	Monash University	Underway (seagrass only)	Holland et al. 2013
Confirmation of seagrass species using genetic markers	R.19	1	MW/DELWP/ CMA	Deakin University	Complete	Keough and Sherman unpublished
Estimate extent of invasion of key habitats	R.22	2	MW	Victoria University	Tall wheat grass in saltmarsh only	Hurst and Boon 2016
Characterise importance of saltmarshes and mangroves for biodiversity	R.24	3	Deakin	Deakin University	Complete for invertebrates in mangroves	Monk 2012
Use historical aerial photographs and ground-truthing to quantify historical and current distribution of mangroves and saltmarsh vegetation	R.25	2	MW/TNC	Deakin University	Underway	
Capacity for Zostera to recover and colonise new areas	R.26	1	MW/EPA/PV	Monash University	Underway	
Identify determinants of saltmarsh and mangrove recovery and seedling establishment	R.27	2	MW	Deakin University	Underway (mangroves only)	Hurst 2013; Hurst et al. 2015; Hurst et al. (in press
Relationships between sea levels, sedimentation/ erosion rates and vascular plant communities	R.29	2	MW/TNC	Deakin University	Underway	

Research Complete or Underway

		lo	conic species			
Determine linkages between fish and habitats	R.28	1	MW/DELWP/ CMA	Melbourne University	Complete	Jenkins et al. 2013; Jenkins et al. 2015
Investigate marine and estuarine requirements of the listed Australian grayling	R.32	3	MW	ARI	Underway	
Determine relative significance of shorebird and waterbird intertidal feeding areas	R.34	2	CCB	ARI	Complete	Hansen et al. 2011
Examine the trends of fish-eating birds in Western Port and Corner Inlet	R.35	1	MW/DELWP/ CMA	ARI	Complete	Menkhorst et al. 2015
Determine the effects of recreational fishing on fish stocks	R.39	1	MW/DEDJTR	Melbourne University/ DEDJTR	Complete	Jenkins and Conron 2015
Effects of sea level rise on shore birds	R.42	2	CCB	ARI	Complete	Hansen et al. 2011
			Toxicants			
Initial estimate of risk from toxicants	R.36	1	MW/DELWP/ CMA	Melbourne University	Complete	Sharp et al. 2013
Impacts of toxicants on vegetation	R.37	2-3	MW	Melbourne University	Underway (mangroves and seagrass only)	Myers et al. (2015)
Investigate climate change and toxicant effects on fish	R.38	2	MW	Melbourne University	Underway (toxicants only)	Hassell et al. (2016)